کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8911373 1638270 2018 86 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Igneous rocks formed by hypervelocity impact
ترجمه فارسی عنوان
سنگ های آذرین شکل گرفته توسط تاثیر هیپرولوسیتی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
چکیده انگلیسی
Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not be possible and all that may be available is remote sensing data. While the interpretation of some impact melt rocks may be relatively straightforward (e.g., for clast-rich varieties and those with clear projectile contamination) we conclude that distinguishing between impact and endogenic igneous rocks is a non-trivial task that ultimately may require sample investigation and analysis to be conducted. Caution is, therefore, urged in the interpretation of igneous rocks on planetary surfaces.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Volcanology and Geothermal Research - Volume 353, 15 March 2018, Pages 25-54
نویسندگان
, , , , , ,