کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8947508 | 1645583 | 2019 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A review on lubricant condition monitoring information analysis for maintenance decision support
ترجمه فارسی عنوان
بررسی در مورد تجزیه و تحلیل اطلاعات نظارت بر شرایط روانکاری برای پشتیبانی تصمیم گیری تعمیر و نگهداری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
PLSCDMLCMAPIPAOTANASTMCBMCLSRULGMMSAEANNHMMFHTPHMTbNtotal base numberPCA - PCASOM - WHOCluster analysis - آنالیز خوشه ایGenetic algorithm - الگوریتم ژنتیکMANOVA - انتخاب کنیدSociety of Automotive Engineers - انجمن مهندسان خودروFirst hitting time - اولین بار ضربه زدن به زمانISO - ایزوRemaining useful life - باقی مانده زندگی مفیدmultivariate analysis of variance - تجزیه و تحلیل چند متغیره واریانسPrincipal component analysis - تحلیل مولفههای اصلی یا PCADiagnosis - تشخیصCondition-based maintenance - تعمیر و نگهداری مبتنی بر شرایطCondition based maintenance - تعمیر و نگهداری وضعیتAmerican society for testing and materials - جامعه آمریکایی برای آزمایش و موادRandom forest - جنگلهای تصادفی یا جنگلهای تصمیم تصادفیPartial least squares - حداقل مربعات جزئی Decision trees - درختان تصمیم گیریLogistic regression - رگرسیون لوجستیکprincipal component regression - رگرسیون مولفه اصلیInternational Standards Organization - سازمان بین المللی استانداردoriginal equipment manufacturer - سازنده تجهیزات اصلیExpert systems - سیستم های خبرهNeural network - شبکه عصبیGeneral Regression Neural Network - شبکه عصبی Regression عمومیArtificial Neural Network - شبکه عصبی مصنوعیTotal Acid Number - شماره اسید کلFT-IR - طیف سنجی مادون قرمز تبدیل فوریهInfra-red - فرو سرخExtreme pressure - فشار شدیدfourier transform infra-red - فوریه تبدیل مادون قرمزKalman filtering - فیلتر کالمنSupport vector machine - ماشین بردار پشتیبانیSVM - ماشین بردار پشتیبانیKnowledge-based - مبتنی بر دانشRule-based - مبتنی بر قانونProportional hazard model - مدل خطر نسبیHidden Markov model - مدل پنهان مارکوف Fuzzy logic - منطق فازیAmerican Petroleum Institute - موسسه نفت آمریکاOEM - نصب شدهSelf-Organizing Maps - نقشه های خودمراقبتیartificial intelligence - هوش مصنوعیPCR - واکنش زنجیرهٔ پلیمرازcondition monitoring - پایش وضعیتprognosis - پیش شناخت بیماریclassical least squares - کمترین مربع کلاسیکGRN - گرینDeep learning - یادگیری عمیقMachine learning - یادگیری ماشینRepresentation learning - یادگیری نمایندگی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
Lubrication Condition monitoring (LCM) is not only utilized as an early warning system in machinery but also, for fault diagnosis and prognosis under condition-based maintenance (CBM). LCM is considered as an important condition monitoring technique, due to the ample information derived from lubricant testing, which demonstrates an introspective reflection on the condition and state of the machinery and the lubricant. Central to the entire LCM program is the application concept, where information from lubricant analysis is evaluated (for knowledge extraction) and analyzed with a view of generating an output which is interpretable and applicable for maintenance decision support (knowledge application). For robust LCM, varying techniques and approaches are used for extracting, processing and analyzing information for decision support. For this reason, a comprehensive overview of applicative approaches for LCM is necessary, which would aid practitioners to address gaps as far as LCM is concerned in the context of maintenance decision support. However, such an overview, is to the best of our knowledge, lacking in the literature, hence the objective of this review article. This paper systematically reviews recent research trends and development of LCM based approaches applied for maintenance decision support, and specifically, applications in equipment diagnosis and prognosis. To contextualize this concern, an initial review of base oils, additives, sampling and testing as applied for LCM and maintenance decision support is discussed. Moreover, LCM tests and parameters are reviewed and classified under varying categories which include, physiochemical, elemental, contamination and additive analysis. Approaches applicable for analyzing data derived from LCM, here, lubricant analysis for maintenance decision support are also classified into four categories: statistical, model-based, artificial intelligence and hybrid approaches. Possible improvement to enhance the reliability of the judgement derived from the approaches towards maintenance decision support are further discussed. This paper concludes with a brief discussion of plausible future trends of LCM in the context of maintenance decision making. This present study, not only highlights gaps in existing literature, by reviewing approaches applicable for extracting knowledge from LCM data for maintenance decision support, it also reviews the functional and technical aspects of lubrication. This is expected to address gaps in both theory and practice as far as LCM and maintenance decision support are concerned.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volume 118, 1 March 2019, Pages 108-132
Journal: Mechanical Systems and Signal Processing - Volume 118, 1 March 2019, Pages 108-132
نویسندگان
James M. Wakiru, Liliane Pintelon, Peter N. Muchiri, Peter K. Chemweno,