کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
915392 | 918442 | 2006 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Analysis of synchrony demonstrates 'pain networks' defined by rapidly switching, task-specific, functional connectivity between pain-related cortical structures
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب سلولی و مولکولی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Imaging studies indicate that experimental pain is processed in multiple cortical areas which are often characterized as a network. However, the functional connectivity within the network and the other properties of the network is poorly understood. Substantial evidence demonstrates that synchronous oscillations between two cortical areas may indicate functional connectivity between those areas. We test the hypothesis that cortical areas with pain-related activity are functionally connected during attention to a painful stimulus. We stimulated with a painful, cutaneous, laser stimulus and recorded the response directly from the cortical surface (electrocorticography - ECoG) over primary somatosensory (SI), parasylvian (PS), and medial frontal (MF) cortex through subdural electrodes implanted for treatment of epilepsy. The results demonstrate synchrony of ECoGs between cortical structures receiving input from nociceptors, as indicated by the occurrence of laser-evoked potentials (LEPs) and/or event-related desynchronization (ERD). Prior to the stimulus, directed attention to the painful stimulus consistently increased the degree of synchrony between SI and PS regions, as the subject anticipated the stimulus. After the laser stimulus, directed attention to the painful stimulus consistently increased the degree of synchrony between SI and MF cortex, as the subject responded by counting the stimulus. Therefore, attention to painful stimuli always enhanced synchrony between cortical pain-related structures. The pattern of this synchrony changed as the patient switched tasks from anticipation of the stimulus to counting the stimulus. These results are the first compelling evidence of pain networks characterized by rapidly switching, task-specific functional connectivity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: PAIN - Volume 123, Issue 3, August 2006, Pages 244-253
Journal: PAIN - Volume 123, Issue 3, August 2006, Pages 244-253
نویسندگان
S. Ohara, N.E. Crone, N. Weiss, F.A. Lenz,