کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9509631 1341408 2005 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Self-adjoint differential equations for classical orthogonal polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Self-adjoint differential equations for classical orthogonal polynomials
چکیده انگلیسی
This paper deals with spectral type differential equations of the self-adjoint differential operator, 2r order:L(2r)[Y](x)=1ρ(x)drdxrρ(x)βr(x)drY(x)dxr=λrnY(x).If ρ(x) is the weight function and β(x) is a second degree polynomial function, then the corresponding classical orthogonal polynomials, {Qn(x)}n=0∞, are shown to satisfy this differential equation when λrn is given byλrn=∏k=0r-1(n-k)[α1+(n+k+1)β2],where α1 and β2 are the leading coefficients of the two polynomial functions associated with the classical orthogonal polynomials. Moreover, the singular eigenvalue problem associated with this differential equation is shown to have Qn(x) and λrn as eigenfunctions and eigenvalues, respectively. Any linear combination of such self-adjoint operators has Qn(x) as eigenfunctions and the corresponding linear combination of λrn as eigenvalues.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 180, Issue 1, 1 August 2005, Pages 107-118
نویسندگان
,