| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 9536139 | 1357084 | 2005 | 8 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												A hierarchical cluster approach for forward separation of heterogeneous fault/slip data into subsets
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													علوم زمین و سیارات
													زمین شناسی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												A new simple method of stress inversion uses hierarchical cluster analysis for forward separation of heterogeneous fault/slip data into subsets. Fault/slip data are classified into homogeneous fault classes, and a clustering routine classifies these into subsets. The method includes a way of discarding some residual data at the first stage that makes it fairly easy to recognize and eliminate some spurious fault data. However, this method is a type of hard division that overlooks the indeterminate nature of fault data. The more heterogeneous the data, the larger the calculation needed to find from a K-data set the homogeneous fault class that agglomerates a pair of 5-data subsets, sampled in a binomial distribution, with the maximum similarity in estimated stress vector between them. The K-data set is a working data group successively taken from the whole data. Given P phases of different stress state, the minimum value of K is 5P+1. Results from applying the method to two examples, artificial and real, demonstrate the feasibility of the method.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Structural Geology - Volume 27, Issue 5, May 2005, Pages 929-936
											Journal: Journal of Structural Geology - Volume 27, Issue 5, May 2005, Pages 929-936
نویسندگان
												Yehua Shan, Norman Fry,