کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1664525 1518013 2015 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Formation of palladium hydrides in low temperature Ar/H2-plasma
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
پیش نمایش صفحه اول مقاله
Formation of palladium hydrides in low temperature Ar/H2-plasma
چکیده انگلیسی


• Thin Pd films were treated under low pressure conditions by an Ar/H2-plasma.
• The formation of Pd hydrides depends on the substrate voltage and the plasma exposition time.
• Substrate voltages up to − 50 V cause a lattice dilatation in the fcc Pd unit cell.
• Higher biasing conditions cause a lattice shrinking of the fcc Pd structure.
• Under longtime plasma exposure the fcc PdHVac phases convert into cubic PdH1.33.

20 nm thick Pd coatings deposited on Si substrates with 800 nm SiO2 and 1 nm Cr buffer layers were treated in a 2.45 GHz microwave plasma source at 700 W plasma power and 40 Pa working pressure without substrate heating. For obtaining information on the effect of energy influx due to ion energy on the palladium films the substrate potential was varied from Usub = 0 V to − 150 V at constant gas flow corresponding to mean ion energies Ei from 0.22 eV ∙ cm− 2 ∙ s− 1 to 1.28 eV ∙ cm− 2 ∙ s− 1.In contrast to high pressure reactions with metallic Pd, under plasma exposure we do not observe solid solutions over a wide range of hydrogen concentration. The hydrogen incorporation in Pd films takes place discontinuously. At 0 V substrate voltage palladium hydride is formed in two steps to PdH0.14 and PdH0.57. At − 50 V substrate voltage PdH0.57 is formed directly. However, substrate voltages of − 100 V and − 150 V cause shrinking of the unit cell. We postulate the formation of two fcc vacancy palladium hydride clusters PdHVac(I) and PdHVac(II). Under longtime plasma exposure the fcc PdHVac(II) phase forms cubic PdH1.33.The fcc PdH0.57 phase decomposes at temperatures > 300 °C to form metallic fcc Pd. The hydrogen removal causes a decrease of lattice defects. In situ high temperature diffractometry measurements also confirm the existence of PdHVac(II) as a palladium hydride phase. Stoichiometric relationship between cubic PdH1.33 and fcc PdHVac(II) becomes evident from XR measurements and structure considerations. We assume both phases have the chemical composition Pd3H4. Up to 700 °C we observe phase transformation between both the fcc PdHVac(II) and cubic PdH1.33 phases. These phase transformations could be explained analog to a Bain distortion by displacive solid state structural changes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Thin Solid Films - Volume 596, 1 December 2015, Pages 185–189
نویسندگان
, , , , , ,