کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1665207 1518042 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Influence of zinc dialkyldithiophosphate tribofilm formation on the tribological performance of self-mated diamond-like carbon contacts under boundary lubrication
ترجمه فارسی عنوان
تأثیر شکل گیری دی دیکلیدیتیوفسفره روی بر عملکرد تریبولوژیکی مخاطب کربن الماسی مانند خودبخودی تحت روانکاری مرزی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
چکیده انگلیسی


• Zinc dialkyldithiophosphate (DTP) tribofilm formation on various DLC surfaces was evidenced.
• Pad-like tribofilm was found on a-C:H, a-C, Si-DLC and Cr-DLC.
• Pad-like tribofilm on DLC surfaces greatly increased the wear resistance.
• Hydrogenated and doped DLC coatings are more active with ZnDTP.
• Patchy tribofilm was found on ta-C which do not have anti wear performance.

Diamond-like carbon (DLC) coatings offer excellent mechanical and tribological properties that make them suitable protective coatings for various industrial applications. In recent years, several engine and power train components in passenger cars, which work under boundary lubricated conditions, have been coated with DLC coatings. Since conventional lubricants and lubricant additives are formulated for metal surfaces, there are still controversial questions concerning chemical reactivity between DLC surfaces and common lubricant additives owing to the chemical inertness of DLC coatings. In this work, we present the influence of zinc dialkyldithiophosphate (ZnDTP) anti-wear additives on the tribological performance of various self-mated DLC coatings under boundary lubrication conditions. The effects of hydrogen, doping elements, and surface morphology on the reactivity of DLC coatings to form a ZnDTP-derived tribofilm were investigated by atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirmed that ZnDTP-derived pad-like or patchy tribofilm forms on the surfaces depending on the DLC coating. It is seen that hydrogen content and doping elements increase pad-like tribofilm formation. Doped DLC coatings are found to give better wear resistance than non-doped DLC coatings. Furthermore, the addition of ZnDTP additives to the base oil significantly improves the wear resistance of hydrogenated DLC, silicon-doped hydrogenated DLC, and chromium-doped hydrogenated DLC. Hydrogen-free tetrahedral amorphous DLC coatings provide the lowest friction coefficient both in PAO (poly-alpha-olefin) and PAO + ZnDTP oils.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Thin Solid Films - Volume 562, 1 July 2014, Pages 389–397
نویسندگان
, , , , ,