کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1665418 1518043 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Molecular dynamics simulation of Cu-Zr-Al metallic-glass films under indentation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
پیش نمایش صفحه اول مقاله
Molecular dynamics simulation of Cu-Zr-Al metallic-glass films under indentation
چکیده انگلیسی


• Cu-Zr-Al metallic-glass thin films are prepared by sputter deposition simulations.
• Metallic-glass films are characterized by molecular dynamics simulations.
• Atomic structures are compared with synchrotron experiment.
• Strain and elastic constants are studied in relation to structural relaxation.

In this paper, the (Cu50Zr50)100-xAlx (X = 0, 2, 4, 5, 6, 8, 10, 12, atomic percent) metallic-glass thin films on the titanium crystalline substrate were constructed by using molecular dynamics (MD) to simulate sputter deposition. The deposition simulations adopted a tight-binding potential with consideration of argon working gas from the pair-wise Moliere potential. The as-deposited films were amorphous and used as initial structures for nano-indentation simulations with a right-angle conical indenter tip to obtain their mechanical properties. All simulations were carried out at temperature 300 K to compare with experimental data. The radial distribution function of the film is calculated and compared with synchrotron experimental data. From the nanoindentation simulations, the hardness and Young's modulus of the films were calculated, as well as the pileup index under two different depth-to-thickness ratios. Our MD simulation results are consistent with experimental data. Furthermore, atomic strains were calculated to reveal deformation localization. In addition, elastic constants of the film and associated degrees of elastic anisotropy were studied to correlate structural anisotropy and to reveal structural relaxation. It is found that the deposited and MD-equilibrated films have notable anisotropic elastic constants, and their relaxation can be observed at the MD time scales.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Thin Solid Films - Volume 561, 30 June 2014, Pages 114–119
نویسندگان
, ,