کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1666806 | 1518075 | 2013 | 4 صفحه PDF | دانلود رایگان |

For room temperature toxic gas sensing, a system chip with a MWCNT (multi-walled carbon nanotube)-assisted array of 30 sensors (two sensors for each of 15 sensor types) was developed. Gases tested include four simulants of chemical warfare agents: dichloromethane, acetonitrile, 2-chloroethyl ethyl sulfide, and dimethyl-methyl phosphonate (DMMP). By selecting 15 different functional polymer materials, each composite sensor composed of 15 sensing stacks (polymer/MWCNTs/Si(001), wafer) was fabricated by a solution droplet casting method to simplify the process. The principle of gas sensing is basically to measure the resistivity change of the composite sensor device upon contact with a target gas. One of the advantages of the sensing stack having a polymer overlayer above the MWCNT layer is being able to protect the MWCNT from direct interaction with the gas to improve sensor life and sensitivity. The results indicate that a fingerprint pattern of the sensor radar plot can be determined for each testing run, and that specificity can be achieved through a 3-D principal component analysis of the radar plots. The results also show that a linear relationship between the resistance response and concentration is clearly evident for these four toxic gases. By extrapolation and careful process monitoring, a sensitivity much lower than 43 ppm for DMMP vapor is likely. The gas sensing mechanisms are discussed in the text.
► The radar plots of the system chip can detect gas specificity at room temperature.
► Chip on interdigitized microelectrode substrate by a simple solution droplet method
► The radar plots can be read simply by mathematical method.
► Detection of the radar plots for ppm gas concentration range is very likely.
Journal: Thin Solid Films - Volume 529, 1 February 2013, Pages 205–208