کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1674138 | 1008957 | 2008 | 8 صفحه PDF | دانلود رایگان |

The performance of conducting polymers as actuators is determined by a complicated series of molecular processes that occur as a result of oxidation and reduction of the polymer. In particular, the amount of actuation strain generated for a given voltage stimulus is determined by the number and type of ions (and solvent) that enter and leave the polymer and changes in the mechanical properties (particularly elastic modulus) of the polymer. In this paper, we present the effects of cyclic voltammetry on the shear modulus and volume of polypyrrole in two different electrolytes: propylene carbonate and an ionic liquid. An electrochemical quartz crystal microbalance has been used to study simultaneous volume and modulus changes occurring during redox cycling of polypyrrole. The results demonstrate that the modulus generally increases due to oxidation of the polymer, although initial oxidation from the fully reduced state first produces a decrease in modulus followed by a larger increase. The modulus shift and volume changes were smaller in the ionic liquid electrolyte, probably because of the absence of solvent. Comparison of the results obtained in the two electrolytes suggest that interchain interactions dominate in the determination of modulus, so that modulus is higher in the oxidised state even when the polymer is swollen with counterions and solvent.
Journal: Thin Solid Films - Volume 516, Issue 9, 3 March 2008, Pages 2800–2807