کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1675185 1008975 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Crystalline hydroxyapatite thin films produced at room temperature — An opposing radio frequency magnetron sputtering approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
پیش نمایش صفحه اول مقاله
Crystalline hydroxyapatite thin films produced at room temperature — An opposing radio frequency magnetron sputtering approach
چکیده انگلیسی

Hydroxyapatite (HA) films have been widely recognized for their biocompatibility and utility in promoting biointegration of implants in both osseous and soft tissue. Conventional sputtering techniques have shown some advantages over the commercially available plasma spraying method; however, the as-sputtered films are usually amorphous which can cause some serious adhesion problems when post-deposition heat treatment is necessitated. In this paper we present an opposing radio frequency (RF) magnetron sputtering approach for the preparation of HA thin films on various substrates at low power levels. Using this alternative RF magnetron geometry, as-sputtered HA films are nearly stoichiometric, highly crystalline, and strongly bound to the substrate. Post-deposition heat treatment under 800 °C did not result in a marked improvement in the degree of crystallinity of the films. In addition, dissolution experiments show that as-sputtered films are more stable than annealed ones. As-sputtered films grown on amorphous silica substrates exhibit X-ray diffraction (XRD) patterns similar to those of randomly orientated HA powder. On the other hand, films deposited on oriented substrates such as Si(100) and Si(111) show a polycrystalline HA XRD pattern but with some strongly preferred orientations, indicating that HA crystallization is sensitive to the nature of the substrate. The results suggest that the opposing RF magnetron sputtering approach has some potential to produce high quality HA films on metallic implants.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Thin Solid Films - Volume 515, Issue 17, 13 June 2007, Pages 6773–6780
نویسندگان
, , , , , , , , , ,