کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2015605 1541918 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Salt-responsive mechanisms in chromosome segment substitution lines of rice (Oryza sativa L. cv. KDML105)
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش گیاه شناسی
پیش نمایش صفحه اول مقاله
Salt-responsive mechanisms in chromosome segment substitution lines of rice (Oryza sativa L. cv. KDML105)
چکیده انگلیسی
Two chromosome segment substitution lines of Khao Dawk Mali 105 (KDML105) rice that carry quantitative trait loci for drought tolerance located on chromosome 8 (DT-QTL8) designated CSSL8-94 and CSSL8-116 were investigated for co-expression network and physiological responses to salinity compared to their parents (KDML105; drought and salt sensitive recurrent parent, and DH103; drought tolerant QTL donor). These CSSL lines show different salt-response traits under salt stress (CSSL8-94 shows higher tolerance than CSSL8-116) and possess different segments of DT-QTL8. To identify specific biological process(es) associated with salt-stress response, co-expression network analysis was constructed from each DT-QTL segment. To evaluate differential physiological mechanisms responding to salt stress, all rice lines/cultivar were grown for 21 d in soils submerged in nutrient solutions, then subjected to 150 mM NaCl for 7 d. Physiological parameters related to co-expression network analysis (photosynthetic parameters) and salt responsive parameters (Na+/K+ ratio, proline content, malondialdehyde and ascorbate peroxidase activity; EC1.11.1.1) were investigated along with the expression analysis of related genes. Physiological responses under salt stress particularly photosynthesis-related parameters of CSSL8-94 were similar to DH103, whereas those of CSSL8-116 were similar to KDML105. Moreover, expression levels of photosynthesis-related genes selected from the co-expression networks (Os08g41460, Os08g44680, Os06g01850, Os03g07300 and Os02g42570) were slightly decreased or stable in CSSL8-94 and DH103 but were dramatically down-regulated in CSSL8-116 and KDML105. These differential responses may contribute to the photosynthesis systems of CSSL8-94 being less damaged under salt stress in comparison to those of CSSL8-116. It can be concluded that the presence of the specific DT-QTL8 segment in CSSL8-94 not only confers drought tolerant traits but also enhances its salt tolerant ability.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Plant Physiology and Biochemistry - Volume 103, June 2016, Pages 96-105
نویسندگان
, , , , ,