کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
304885 | 512835 | 2010 | 11 صفحه PDF | دانلود رایگان |

Large earthquake-induced displacements of a bridge abutment can occur, when the bridge is built on a floodplain or reclaimed area, i.e., liquefiable ground, and crosses a water channel. Seismic responses of a bridge abutment on liquefiable ground are the consequence of complex interactions between the abutment and surrounding soils. Therefore identification of the factors dominating the abutment response is important for the development of simplified seismic design methods. This paper presents the results of dynamic three-dimensional finite element analyses of bridge abutments adjacent to a river dike, including the effect of liquefaction of the underlying ground using earthquake motions widely used in Japan. The analysis shows that conventional design methods may underestimate the permanent abutment displacements unless the following two items are considered: (1) softening of the soil beneath the liquefiable layer, due to cyclic shearing of the soil surrounding the piles, and (2) the forces acting on the side faces of the abutment.
Journal: Soil Dynamics and Earthquake Engineering - Volume 30, Issue 3, March 2010, Pages 146–156