کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4537659 1626502 2007 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Iron–light interactions during the CROZet natural iron bloom and EXport experiment (CROZEX) I: Phytoplankton growth and photophysiology
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی
پیش نمایش صفحه اول مقاله
Iron–light interactions during the CROZet natural iron bloom and EXport experiment (CROZEX) I: Phytoplankton growth and photophysiology
چکیده انگلیسی

The CROZet natural iron bloom and EXport experiment (CROZEX) investigated phytoplankton blooms in the vicinity of the Crozet Plateau in the polar frontal zone (PFZ) of the Southern Ocean. Peak chlorophyll concentrations reached during an intense bloom within naturally iron (Fe)-fertilised regions north of the plateau were an order of magnitude higher than those observed in deeper mixed layers and low-Fe waters to the south. To establish the factors influencing phytoplankton dynamics, a suite of in situ phytoplankton physiological measurements and shipboard Fe–light perturbation experiments was performed. Addition of Fe in experiments performed during bloom decline north of the plateau resulted in increased accumulation of phytoplankton biomass and changes in a number of phytoplankton physiological characteristics. In particular photosystem II (PSII) photochemical efficiencies (Fv/Fm) measured by fast repetition rate fluorometry increased above in situ values within 24 h of Fe amendment, suggesting that Fe stress had contributed to bloom termination. In contrast, responses to Fe amendment were minor within an experiment initiated in low-silicic acid, post-bloom waters south of the Plateau. Within the intense bloom in the north, light limitation due to self-shading may have constrained the peak phytoplankton standing stock. However, in the absence of Fe amendment, incubation at higher than in situ irradiance levels had little influence on phytoplankton biomass accumulation for declining bloom populations. Instead reduced Fv/Fm, reflecting increased photoinhibitory damage to PSII, was observed in high-light incubations and was also apparent in situ. Interactions between Fe and light availability thus influenced phytoplankton physiology and growth and potentially contributed to bloom longevity during CROZEX.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Deep Sea Research Part II: Topical Studies in Oceanography - Volume 54, Issues 18–20, September–October 2007, Pages 2045–2065
نویسندگان
, , , , , , , ,