کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4537941 | 1626491 | 2008 | 7 صفحه PDF | دانلود رایگان |

Light is a major determinant not only for carbon (C)-fixation in autotrophs, but also for the cellular proportions of major elements like C, nitrogen (N) and phosphorus (P). High intensities of photosynthetically active radiation (PAR) increase C:P-ratios in experiments with arctic marine and freshwater phytoplankton species. While high levels of PAR promote high autotrophic productivity, the increased C:P may invoke a “paradox of enrichment” effect since this means lower stoichiometric food quality for herbivores. In contrast, exposure to ultraviolet radiation (UVR) gave reduced cellular C:P-ratios (and N:P) in phytoplankton. This was partly owing to a strong reduction in C-fixation under UVR, but also due to enhanced uptake of P, presumably in response to increased demands for nucleotide repair under UVR stress. The net outcome of these opposing effects will depend on optical properties and mixing depth in the water column. These stoichiometric responses could cause deviations from Redfield ratio in phytoplankton as well as affecting biogeochemical cycling and trophic transfer efficiency in aquatic food-webs.
Journal: Deep Sea Research Part II: Topical Studies in Oceanography - Volume 55, Issues 20–21, October 2008, Pages 2169–2175