کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4538593 1626522 2005 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Trophic accumulation of PSP toxins in zooplankton during Alexandrium fundyense blooms in Casco Bay, Gulf of Maine, April–June 1998. I. Toxin levels in A. fundyense and zooplankton size fractions
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی
پیش نمایش صفحه اول مقاله
Trophic accumulation of PSP toxins in zooplankton during Alexandrium fundyense blooms in Casco Bay, Gulf of Maine, April–June 1998. I. Toxin levels in A. fundyense and zooplankton size fractions
چکیده انگلیسی

The transfer of marine algal toxins involving a range of phytoplanktivorous vectors is well documented as a means of exposing organisms at higher trophic levels (including humans) to these naturally occurring yet harmful compounds. While previous studies have examined the potential for, and dynamics of, algal toxin accumulation by individual zooplankton species, few have attempted to distinguish the contribution of various grazer size classes to toxin trophic transfer in natural communities and characterize some of the factors that can influence this process. The current investigation was aimed at describing the size-fractioned (64–100, 100–200, 200–500, >500 μm) accumulation of paralytic shellfish poisoning (PSP) toxins by zooplankton in Casco Bay and the adjacent coastal waters of the Gulf of Maine during a series of cruises from April to June 1998. Several variables, including the abundance of PSP toxin-producing Alexandrium fundyense, in-water toxin concentrations associated with this dinoflagellate, and algal toxin cell quotas, were measured and their relationship to zooplankton toxin accumulation assessed.A principal finding of this work was the ability of any grazer size class examined (including grazers present in the 20–64 μm A. fundyense-containing fraction) to serve as an initial vector for introducing PSP toxins into the Casco Bay food web at various times during the sampling period, thereby providing multiple potential routes of toxin trophic transfer. In addition, trends observed in the coincident mapping of A. fundyense cells and their associated toxin were generally in agreement, yet did not remain closely coupled at all times. Therefore, although A. fundyense abundance can be a reasonable indicator of PSP toxin presence in the phytoplankton, this relationship can vary considerably and lead to situations where elevated toxin levels occur at low cell concentrations and vice versa. The uncoupling of A. fundyense cell and in-water toxin concentrations in the 20–64 μm, A. fundyense-containing size fraction implied fluctuations in the algal toxin cell quota, which ranged from ca. 10 to 2000 fmol STX equiv. cell−1. Some of this variability may reflect the changing presence in this size fraction of grazers (e.g., tintinnids) capable of toxin accumulation, causing an upward bias in A. fundyense toxin cell quota estimates. Overall, the extent of PSP toxin transfer into zooplankton will be determined by a complex interaction among several factors, including A. fundyense and grazer abundance, algal toxin cell quota, and zooplankton community composition. An ability to predict zooplankton toxin accumulation will require further investigation of the relationships between these and other factors, aimed specifically at modeling the process of toxin trophic transfer to grazers and ultimately to their predators.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Deep Sea Research Part II: Topical Studies in Oceanography - Volume 52, Issues 19–21, September–October 2005, Pages 2764–2783
نویسندگان
, , , , ,