کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4575880 1332880 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A locally adaptive kernel regression method for facies delineation
ترجمه فارسی عنوان
یک روش رگرسیون هسته ای سازگار محلی برای تشخیص رخساره ها
کلمات کلیدی
هیدرولوژی آبهای زیرزمینی تصادفی، بازسازی زمین های زمین شناسی، آمار زمین شناسی حمل و نقل اتمام است
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


• Methodology to use kernel regression methods as a tool for facies delineation.
• Self-adjusting kernels to the direction of highest local spatial correlation.
• Outperforms the nearest neighbor classification whenever hard data is small.
• Allows for a reasonable reconstruction of the facies connectivity patterns.

SummaryFacies delineation is defined as the separation of geological units with distinct intrinsic characteristics (grain size, hydraulic conductivity, mineralogical composition). A major challenge in this area stems from the fact that only a few scattered pieces of hydrogeological information are available to delineate geological facies. Several methods to delineate facies are available in the literature, ranging from those based only on existing hard data, to those including secondary data or external knowledge about sedimentological patterns. This paper describes a methodology to use kernel regression methods as an effective tool for facies delineation. The method uses both the spatial and the actual sampled values to produce, for each individual hard data point, a locally adaptive steering kernel function, self-adjusting the principal directions of the local anisotropic kernels to the direction of highest local spatial correlation. The method is shown to outperform the nearest neighbor classification method in a number of synthetic aquifers whenever the available number of hard data is small and randomly distributed in space. In the case of exhaustive sampling, the steering kernel regression method converges to the true solution. Simulations ran in a suite of synthetic examples are used to explore the selection of kernel parameters in typical field settings. It is shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The performance of the method is demonstrated to significantly improve when external information regarding facies proportions is incorporated. Remarkably, the method allows for a reasonable reconstruction of the facies connectivity patterns, shown in terms of breakthrough curves performance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 531, Part 1, December 2015, Pages 62–72
نویسندگان
, , , ,