کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
4638465 | 1632011 | 2015 | 20 صفحه PDF | سفارش دهید | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An energy-conserving second order numerical scheme for nonlinear hyperbolic equation with an exponential nonlinear term
ترجمه فارسی عنوان
یک روش عددی مرتبه دوم برای صرفه جویی در انرژی برای معادله هیپربولیکی غیر خطی با یک اصطلاح غیر خطی نمایی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
چکیده انگلیسی
We present a second order accurate numerical scheme for a nonlinear hyperbolic equation with an exponential nonlinear term. The solution to such an equation is proven to have a conservative nonlinear energy. Due to the special nature of the nonlinear term, the positivity is proven to be preserved under a periodic boundary condition for the solution. For the numerical scheme, a highly nonlinear fractional term is involved, for the theoretical justification of the energy stability. We propose a linear iteration algorithm to solve this nonlinear numerical scheme. A theoretical analysis shows a contraction mapping property of such a linear iteration under a trivial constraint for the time step. We also provide a detailed convergence analysis for the second order scheme, in the ââ(0,T;ââ) norm. Such an error estimate in the maximum norm can be obtained by performing a higher order consistency analysis using asymptotic expansions for the numerical solution. As a result, instead of the standard comparison between the exact and numerical solutions, an error estimate between the numerical solution and the constructed approximate solution yields an O(Ît3+h4) convergence in ââ(0,T;â2) norm, which leads to the necessary ââ error estimate using the inverse inequality, under a standard constraint Îtâ¤Ch. A numerical accuracy check is given and some numerical simulation results are also presented.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 280, 15 May 2015, Pages 347-366
Journal: Journal of Computational and Applied Mathematics - Volume 280, 15 May 2015, Pages 347-366
نویسندگان
Lingdi Wang, Wenbin Chen, Cheng Wang,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت