کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4640261 1341268 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems
چکیده انگلیسی

Heuristic optimization provides a robust and efficient approach for solving complex real-world problems. The aim of this paper is to introduce a hybrid approach combining two heuristic optimization techniques, particle swarm optimization (PSO) and genetic algorithms (GA). Our approach integrates the merits of both GA and PSO and it has two characteristic features. Firstly, the algorithm is initialized by a set of random particles which travel through the search space. During this travel an evolution of these particles is performed by integrating PSO and GA. Secondly, to restrict velocity of the particles and control it, we introduce a modified constriction factor. Finally, the results of various experimental studies using a suite of multimodal test functions taken from the literature have demonstrated the superiority of the proposed approach to finding the global optimal solution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 235, Issue 5, 1 January 2011, Pages 1446–1453
نویسندگان
, , ,