کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4696804 | 1637227 | 2016 | 10 صفحه PDF | دانلود رایگان |

• Hydrothermal carbonaceous material (CM) associated with a Proterozoic U deposit
• First description of CM in the Thelon Basin area of Nunavut
• Unusual association of massive and disseminated CM with U oxide minerals
• Natural carbon nanoscale structures controlled crystal nucleation and growth
Concentrations of 7% U and 1% Cu were identified in massive, brecciated, and amorphous carbonaceous materials (CM) characterized by strongly negative values of carbon stable isotopes (δ13C = − 39.1‰ relative to PDB). The anomalies are restricted to clay alteration halos developed in Neoarchean Woodburn Lake group metagreywacke that is the predominant host of unconformity-related uranium (U) deposits in the Kiggavik exploration camp. Petrographic and microstructural analyses by SEM, X-ray Diffraction, HRTEM and RAMAN spectroscopy identified carbon veils, best described as graphene-like carbon, upon which nano-scale uraninite crystals are distributed. CMs are common in U systems such as the classic Cretaceous roll-front deposits and the world-class Paleoproterozoic unconformity-related deposits. However, the unusual spatial and textural association of U minerals and CM described herein raises questions on mechanisms that may have been responsible for the precipitation of the CM followed by crystallization of U oxides on its surfaces. Based on the characteristics presented herein, the CMs at Kiggavik are interpreted as hydrothermal in origin. Furthermore, the nanoscale organization and properties of these graphene-like layers that host U oxide crystallites clearly localized U oxide nucleation and growth.
Journal: Ore Geology Reviews - Volume 79, December 2016, Pages 382–391