کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4698344 1637554 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Diffusion in mineral geochronometers: Present and absent
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Diffusion in mineral geochronometers: Present and absent
چکیده انگلیسی


• Element diffusion is well documented in laboratory experiments.
• Bell-shaped element concentration profiles are also found in some natural minerals.
• Isotope ratios in mineral geochronometers follow patchwise step functions instead.
• High spatial resolution analyses reveal ubiquitous fluid-assisted recrystallization.
• Geochronology plus petrology can unravel relict and neoformed metamorphic minerals.

In solid-state physics and materials science Fick's Law diffusion is a well-established process. In Earth Sciences, laboratory experiments on garnet, olivine and other anhydrous minerals do document the intra-grain element concentration gradients that follow the functional form required by Fick's Law. Natural gradients in minerals have rarely been analyzed with the necessary spatial resolution. Reports of actual observations of diffusion profiles of element concentrations are rare in the literature, and diffusion profiles of isotope ratios in minerals used for geochronology are absent. An in-depth re-examination of recent and older literature suggests that isotope transport in minerals is instead often dominated by fluid-mediated retrogression reactions. Imaging microtextures by cathodoluminescence or back-scattered electron maps provides ubiquitous evidence of patchy or dendritic replacement structures, which correspond to multiple growth stages, in zircon, monazite, muscovite, biotite, K-feldspar, etc. The U–Pb, K–Ar and Rb–Sr systems in these partly retrogressed minerals show isotopic inheritance (that survived the retrograde reactions at least in part) in close correspondence with the petrologic relicts.Depending on the relative rates of the petrological processes relevant for isotope transport, geochronometers can be grouped in two classes: Class I (thermochronometers) are those for which the diffusivity of a given radiogenic isotope is faster than the rate of dissolution and/or reprecipitation, and Class II (hygrochronometers) are those for which aqueous dissolution/reprecipitation is the faster process. All of the abovementioned geochronometers, for which patchy/dendritic textures formed by diachronous mineral generations and isotopic inheritance were observed, must be assigned to Class II. Class II samples in petrologic equilibrium can (but need not) record purely thermal diffusion of daughter isotopes. The isotope record of Class II minerals in petrologic disequilibrium, being controlled by inheritance and retrogression reactions, depends chiefly on the reaction-promoting factors, water activity and strain. The dependence of Class II mineral ages on thermal diffusion is subordinate and never unique.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Geology - Volume 420, 20 January 2016, Pages 1–10
نویسندگان
,