کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4700173 1637695 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydrosulfide/sulfide complexes of zinc to 250 °C and the thermodynamic properties of sphalerite
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Hydrosulfide/sulfide complexes of zinc to 250 °C and the thermodynamic properties of sphalerite
چکیده انگلیسی

The solubility of synthetic ZnS(cr) was measured at 25–250 °C and P = 150 bars as a function of pH in aqueous sulfide solutions (~ 0.015–0.15 m of total reduced sulfur). The solubility determinations were performed using a Ti flow-through hydrothermal reactor. The solubility of ZnS(cr) was found to increase slowly with temperature over the whole pH range from 2 to ~ 10. The values of the Zn–S–HS complex stability constant, β, were determined for Zn(HS)20(aq), Zn(HS)3−, Zn(HS)42−, and ZnS(HS)−. Based on the experimental values the Ryzhenko–Bryzgalin electrostatic model parameters for these stability constants were calculated, and the ZnS(cr) solubility and the speciation of Zn in sulfide-containing hydrothermal solutions were evaluated. The most pronounced solubility increase, about 3 log units at m(Stotal) = 0.1 for the temperatures from 25 to 250 °C, was found in acidic solutions (pH ~ 3 to 4) in the Zn(HS)20(aq) predominance field. In weakly alkaline solutions, where Zn(HS)3− and Zn(HS)42− are the dominant Zn–S–HS complexes, the ZnS(cr) solubility increases by 1 log unit at the same conditions. It was found that ZnS(HS)− and especially Zn(HS)42− become less important in high temperature solutions. At 25 °C and m(Stotal) = 0.1, these species dominate Zn speciation at pH > 7. At 100 °C and m(Stotal) = 0.1, the maximum fraction of Zn(HS)42− is only 20% of the total Zn concentration (i.e. at pHt ~ 7.5), whereas at 350 °C and 3  0.05 m, Zn–Cl complexes are responsible for hydrothermal Zn transport with no significant contribution of Zn–S–HS complexes. The hydrosulfide/sulfide complexes will play a more important role in lower salinity (< 0.05 m chloride) hydrothermal solutions which are characteristic of many epithermal ore depositing environments. The value of ΔfG° (β-ZnS(cr)) = − 198.6 ± 0.2 kJ/mol at 25 °C was determined via solubility measurements of natural low-iron Santander (Spain) sphalerite.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Geology - Volume 269, Issues 3–4, 30 January 2010, Pages 301–311
نویسندگان
, ,