کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4702848 | 1638068 | 2012 | 17 صفحه PDF | دانلود رایگان |

Aerosol deposition provides a major input of the essential micronutrient iron to the open ocean. A critical parameter with respect to biological availability is the proportion of aerosol iron that enters the oceanic dissolved iron pool – the so-called fractional solubility of aerosol iron (%FeS). Here we present a global-scale compilation of total aerosol iron loading (FeT) and estimated %FeS values for ∼1100 samples collected over the open ocean, the coastal ocean, and some continental sites, including a new data set from the Atlantic Ocean. Despite the wide variety of methods that have been used to define ‘soluble’ aerosol iron, our global-scale compilation reveals a remarkably consistent trend in the fractional solubility of aerosol iron as a function of total aerosol iron loading, with the great bulk of the data defining an hyperbolic trend. The hyperbolic trends that we observe for both global- and regional-scale data are adequately described by a simple two-component mixing model, whereby the fractional solubility of iron in the bulk aerosol reflects the conservative mixing of ‘lithogenic’ mineral dust (high FeT and low %FeS) and non-lithogenic ‘combustion’ aerosols (low FeT and high %FeS). An increasing body of empirical and model-based evidence points to anthropogenic fuel combustion as the major source of these non-lithogenic ‘combustion’ aerosols, implying that human emissions are a major determinant of the fractional solubility of iron in marine aerosols. The robust global-scale relationship between %FeS and FeT provides a simple heuristic method for estimating aerosol iron solubility at the regional to global scale.
Journal: Geochimica et Cosmochimica Acta - Volume 89, 15 July 2012, Pages 173–189