کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4702882 1638070 2012 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Replacement of olivine by serpentine in the carbonaceous chondrite Nogoya (CM2)
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Replacement of olivine by serpentine in the carbonaceous chondrite Nogoya (CM2)
چکیده انگلیسی

Coarse (chondrule and isolated) olivine in some CM chondrites is replaced by serpentine in both centripetal and meshwork replacement textures. Locally preserved textures formed by partial replacement of coarse olivine by serpentine in the carbonaceous chondrite Nogoya (CM2) establish unique associations between each individual mass of serpentine and the specific olivine from which that serpentine formed. Electron probe microanalyses show that the composition of serpentine replacing coarse olivine is uniform throughout all analyzed volumes of Nogoya, and is independent of the composition of the olivine being replaced. If, as previously proposed, late-stage alteration fluids were Mg-rich because Fe-source minerals were depleted in earlier stages, then the uniform Mg-rich composition of the serpentine replacing large silicate grains during advanced stages of alteration may indicate diffusional homogenization of the aqueous solutions over progressively larger spatial scales, enabled by long timescales and previously proposed stagnant or slow-moving fluids.The range of olivine compositions replaced in Nogoya is even larger than previously reported from ALH 81002 (CM2). This militates against hypotheses of strong primary-mineral control on the compositions of alteration products, at least at advanced stages of alteration. The serpentine formed by olivine replacement in Nogoya is more magnesian than the counterpart serpentine replacing all anhydrous primary silicates in ALH 81002. This intermeteorite heterogeneity of replacement-serpentine composition between ALH 81002 and Nogoya indicates that the aqueous solutions in which the olivine-serpentine replacement reactions occurred were of different compositions in the two different CM parent-body volumes sampled by ALH 81002 and Nogoya. The more magnesian character of serpentines in Nogoya than in ALH 81002 indicates that the Nogoya aqueous-alteration environment was even more highly evolved toward Mg-rich solutions than the environment indicated by the composition of the serpentine in ALH 81002.Persistence of primary-silicate remnants within centripetal and meshwork serpentine indicates that either the aqueous alteration episodes in the parent-body volumes represented by individual meteorites were too short to allow complete replacement of olivine by serpentine, or one or more reactants (most likely water) were completely consumed before the coarse primary silicate was completely replaced. Seemingly incompatible arguments for and against primary-mineral control of serpentine composition during CM chondrite alteration may be reconciled by considering the different grain sizes and reaction timescales that likely existed in different textural settings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 87, 15 June 2012, Pages 117–135
نویسندگان
, , ,