کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4703012 1352845 2011 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha–mineral interface
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha–mineral interface
چکیده انگلیسی

In soils, mycorrhiza (microscopic fungal hypha) living in symbiosis with plant roots are the biological interface by which plants obtain, from rocks and organic matter, the nutrients necessary for their growth and maintenance. Despite their central role in soils, the mechanism and kinetics of mineral alteration by mycorrhiza are poorly constrained quantitatively. Here, we report in situ quantification of weathering rates from a mineral substrate, (0 0 1) basal plane of biotite, by a surface-bound hypha of Paxillus involutus, grown in association with the root system of a Scots pine, Pinus sylvestris. Four thin-sections were extracted by focused ion beam (FIB) milling along a single hypha grown over the biotite surface. Depth-profile of Si, O, K, Mg, Fe and Al concentrations were performed at the hypha–biotite interface by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX). Large removals of K (50–65%), Mg (55–75%), Fe (80–85%) and Al (75–85%) were observed in the topmost 40 nm of biotite underneath the hypha while Si and O are preserved throughout the depth-profile. A quantitative model of alteration at the hypha-scale was developed based on solid-state diffusion fluxes of elements into the hypha and the break-down/mineralogical re-arrangement of biotite. A strong acidification was also observed with hypha bound to the biotite surface reaching pH < 4.6. When consistently compared with the abiotic biotite dissolution, we conclude that the surface-bound mycorrhiza accelerate the biotite alteration kinetics between pH 3.5 and 5.8 to ∼0.04 μmol biotite m−2 h−1. Our current work reaffirms that fungal mineral alteration is a process that combines our previously documented bio-mechanical forcing with the μm-scale acidification mediated by surface-bound hypha and a subsequent chemical element removal due to the fungal action. As such, our study presents a first kinetic framework for mycorrhizal alteration at the hypha-scale under close-to-natural experimental conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 75, Issue 22, 15 November 2011, Pages 6988–7005
نویسندگان
, , , , , , ,