کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4703399 1352863 2011 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lunar Magma Ocean crystallization revisited: Bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Lunar Magma Ocean crystallization revisited: Bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite
چکیده انگلیسی

Crystallization of the Lunar Magma Ocean (LMO) has been numerically modeled and its products inferred from sample observations, but it has never been fully tested experimentally. This study is a reexamination of the LMO hypothesis by means of the first experimental simulation of lunar differentiation. Two end-member bulk Moon compositions are considered: one enriched in refractory lithophile elements relative to Earth and one with no such enrichment. A “two-stage” model of magma ocean crystallization based on geophysical constraints is simulated and features early crystal suspension and equilibrium crystallization followed by fractional crystallization of the residual magma ocean. An initially entirely molten Moon is assumed. Part 1 of this study, presented here, focuses on stage 1 of this model and considers the early cumulates formed by equilibrium crystallization, differences in mantle mineralogy resulting from different bulk Moon compositions, and implications for the source regions of the highlands Mg-suite.Refractory element enriched bulk Moon compositions produce a deep mantle that contains garnet and trace Cr-spinel in addition to low-Ca pyroxene and olivine. In contrast, compositions without refractory element enrichment produce a deep dunitic mantle with low-Ca pyroxene but without an aluminous phase. The differences in bulk composition are magnified in the residual melt; the residual LMO from the refractory element enriched composition will likely produce plagioclase and ilmenite earlier and in greater quantities. Both compositions produce Mg-rich early cumulate piles that extend from the core-mantle boundary to ∼355 km depth, if 50% equilibrium crystallization and whole Moon melting are assumed. These early LMO cumulates provide good fits for the source regions for a component of the high-Mg∗, Ni- and Co-poor parental magmas of the Mg-suite cumulates, if certain conditions are called upon. The olivine in early LMO cumulates produced by either bulk Moon composition is far too rich in Cr to be reasonable for the source regions of the Mg-suite, meaning either core formation in the presence of S and/or C must be invoked to deplete the LMO and the crystallizing olivine in Cr, or that current estimates of the bulk lunar Cr content are too high. We infer that melts meeting the criteria of the Mg-suite parents could be produced from early LMO cumulates by solid state KREEP and plagioclase hybridization near the base of the crust and subsequent partial melting. Additionally, we propose a revised model for Mg-suite petrogenesis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 75, Issue 11, 1 June 2011, Pages 3024–3045
نویسندگان
, , ,