کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4704011 | 1352890 | 2010 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mobility of iridium in terrestrial environments: Implications for the interpretation of impact-related mass-extinctions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Traditionally, iridium has been considered an element of low mobility, but its behavior is still debated. Ir concentration in a soil affected by a catastrophic mining spill in 1998 that covered the soil with a layer of tailings offers the opportunity to analyse an exceptional Ir-bearing horizon 10Â years after deposition. This has enabled comparisons with the values of past Ir-bearing horizons associated to impact-related mass-extinction events. Iridium concentration in the tailings (0.349Â ppm) was 5-fold higher than the anomaly in the K-Pg at The Moody Creek Mine section (the highest values obtained from terrestrial sections). The oxidative weathering of the tailings caused the release of Ir and infiltration into the soil. Iridium distribution in depth indicates redistribution throughout the profile in relation to the change in the physico-chemical properties of the soil. With regard to the background concentration in the soil (0.056Â ppm), anomalous values of Ir (0.129Â ppm) can be detected to 11Â cm below the layer of tailings. The correlation analysis between the Ir concentration and the main properties and constituents of the soils indicated a significant correlation with sulfur, iron, clay content, and pH. Selective extractions were made to study the forms in which Ir can be mobilized in the soil. The residual/insoluble fraction was >90% of the total Ir concentration in soil. Soluble-in-water concentration of Ir (1.5% of total) was detected in the uppermost 2-3Â cm of the soil, which were directly affected by the leaching of acidic waters coming from the oxidation of the pyrite tailings. Iridium retention in the affected part of the soil reached 9% of the total Ir concentration; this retention could be related to the amorphous iron forms dissolved by the oxalic-oxalate extraction. However, according to our research, original Ir abundance could be secondarily modified, and then a direct analysis of the iridium values recorded in sediments could induce misinterpretations. The comparison between the actual example and the fossil record belonging to terrestrial settings, can be considered as a valuable approach, especially when Iridium data were used by researchers to interpret the impact-related mass-extinction events in the past.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 74, Issue 15, 1 August 2010, Pages 4531-4542
Journal: Geochimica et Cosmochimica Acta - Volume 74, Issue 15, 1 August 2010, Pages 4531-4542
نویسندگان
F.J. MartÃn-Peinado, F.J. RodrÃguez-Tovar,