کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4704227 | 1352900 | 2010 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dissolution kinetics of diopside as a function of solution saturation state: Macroscopic measurements and implications for modeling of geological storage of CO2
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Measurements of the dissolution rate of diopside (r) were carried out as a function of the Gibbs free energy of the dissolution reaction (ÎGr) in a continuously stirred flow-through reactor at 90 °C and pH90 °C = 5.05. The overall relation between r and ÎGr was determined over a free energy range of â130.9 < ÎGr < â47.0 kJ mo1â1. The data define a highly non-linear, sigmoidal relation between r and ÎGr. At far-from-equilibrium conditions (ÎGr ⩽ â76.2 kJ mo1â1), a rate plateau is observed. In this free energy range, the rates of dissolution are constant, independent of [Ca], [Mg] and [Si] concentrations, and independent of ÎGr. A sharp decrease of the dissolution rate (â¼1 order of magnitude) occurs in the transition ÎGr region defined by â76.2 < ÎGr ⩽ â61.5 kJ mo1â1. Dissolution closer to equilibrium (ÎGr > â61.5 kJ mo1â1) is characterised by a much weaker inverse dependence of the rates on ÎGr. Modeling the experimental r-ÎGr data with a simple classical transition state theory (TST) law as implemented in most available geochemical codes is found inappropriate. An evaluation of the consequences of the use of geochemical codes where the r-ÎGr relation is based on basic TST was carried out and applied to carbonation reactions of diopside, which, among other reactions with Ca- and Mg-bearing minerals, are considered as a promising process for the solid state sequestration of CO2 over long time spans. In order to take into account the actual experimental r-ÎGr relation in the geochemical code that we used, a new module has been developed. It reveals a dramatic overestimation of the carbonation rate when using a TST-based geochemical code. This points out that simulations of water-rock-CO2 interactions performed with classical geochemical codes should be evaluated with great caution.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 74, Issue 9, 1 May 2010, Pages 2615-2633
Journal: Geochimica et Cosmochimica Acta - Volume 74, Issue 9, 1 May 2010, Pages 2615-2633
نویسندگان
Damien Daval, Roland Hellmann, Jérôme Corvisier, Delphine Tisserand, Isabelle Martinez, François Guyot,