کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4704298 1352905 2009 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Millennial/centennial-scale thermocline ventilation changes in the Indian Ocean as reflected by aragonite preservation and geochemical variations in Arabian Sea sediments
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Millennial/centennial-scale thermocline ventilation changes in the Indian Ocean as reflected by aragonite preservation and geochemical variations in Arabian Sea sediments
چکیده انگلیسی

The formation and temporal variability of the oxygen minimum zone (OMZ) of the Arabian Sea is a subject of intense research. We contribute to the discussion by studying modern seawater profiles of the Indian Ocean (salinity, O2, pH, aragonite saturation, nitrate deficit, nutrients), which show that Subantarctic Mode and Antarctic Intermediate Waters (SAMW–AAIW) have a strong influence on the OMZ characteristics of the Arabian Sea. To obtain a better grasp of the range of possible OMZ variations, we studied a 50-kyr record in the NE Arabian Sea (core MD042876) from a site at 828 m water depth within the thermocline. In this core, aragonite is preserved during North Atlantic Heinrich events (HEs) and Dansgaard-Oeschger (DO) stadials, while it is absent during DO interstadials and most of the Holocene. Considering the excellent correlation between aragonite content and Sr/Ca ratio, as well as the presence of fine-grained aragonitic needles and the isotopic composition (δ13C) of carbonates in the fine fraction, we infer that essentially all aragonite originates as fine Sr-rich debris from shallow water. A comparison with other records from the NE Arabian Sea (Sr/Ca, δ15N) indicates that aragonite variability in the cores is rather controlled by OMZ intensity variations as forcing mechanism while changes in aragonite supply seem to play a minor role. The strong correlation of aragonite content with changes in millennial-scale ventilation of the Indian Ocean, as well as a comparison with modern oceanographic conditions, supports the theory that OMZ intensity variations are controlled by changes in the formation of SAMW–AAIW, and are not only due to monsoonal changes. Thus, during HEs and DO stadials, the thermocline Arabian Sea experienced a strengthened influx of O2-rich SAMW–AAIW. On the other hand, OMZ conditions during DO interstadials and the Holocene seem best explained by analogy with the present-day situation: low supply of O2 combined with elevated O2 demand controlled by monsoon-related productivity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 73, Issue 22, 15 November 2009, Pages 6771–6788
نویسندگان
, ,