کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4704908 1352934 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Redox-driven stable isotope fractionation in transition metals: Application to Zn electroplating
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Redox-driven stable isotope fractionation in transition metals: Application to Zn electroplating
چکیده انگلیسی

Redox processes are ubiquitous in Earth science and are often associated with large isotope fractionations. In a previous study, voltage-dependent amplification of stable isotope fractionation was observed for an Fe reduction process. Here, we describe experiments showing a similar effect for a second transition metal, zinc. After electrochemical reduction, the composition of plated Zn metal is enriched in the light isotope (64Zn) with respect to the Zn2+ leftover in solution, with a voltage-dependent fractionation factor. Results from voltage-dependent electroplating experiments are in good agreement with a second data set following equilibrium fractional isotope evolution of Zn isotopes during an electroplating process which stepwise removes most of the Zn from the aqueous reservoir. Taken together, the results indicate a voltage-dependent isotope fractionation (in permil) of 66Zn with respect to 64Zn to be equal to −3.45 to 1.71 V. The negative slope trend is in contrast with previously published results on iron isotope fractionation during electroplating which shows a positive slope. These results are interpreted using an extension of Marcus theory, which predicts isotope fractionations as a function of driving force in an electrochemical system. Taken together with observations of natural fractionation of redox-sensitive and non redox-active elements, our modified Marcus theory provides a framework for quantitatively predicting transition metal isotope geochemical signatures during environmentally relevant redox processes in terms of simple energetic parameters.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 72, Issue 7, 1 April 2008, Pages 1731–1741
نویسندگان
, , , ,