کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4705095 1352942 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The effect of assimilation, fractional crystallization, and ageing on U-series disequilibria in subduction zone lavas
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
The effect of assimilation, fractional crystallization, and ageing on U-series disequilibria in subduction zone lavas
چکیده انگلیسی

Although most arc lavas have experienced significant magma differentiation, the effect of the differentiation process on U-series disequilibria is still poorly understood. Here we present a numerical model for simulating the effect of time-dependent magma differentiation processes on U-series disequilibria in lavas from convergent margins. Our model shows that, in a closed system with fractional crystallization, the ageing effect can decrease U-series disequilibria via radioactive decay while in an open system, both ageing and bulk assimilation of old crustal material serve to reduce the primary U-series disequilibria. In contrast, with recharge of refresh magma, significant 226Ra excess in erupted lavas can be maintained even if the average residence time is longer than 8000 years.The positive correlations of (226Ra/230Th) between Sr/Th or Ba/Th in young lavas from convergent margins have been widely used as evidence of fluid addition generating the observed 226Ra excess in subduction zones. We assess to what extent the positive correlations of (226Ra/230Th) with Sr/Th and Ba/Th observed in the Tonga arc could reflect AFC process. Results of our model show that these positive correlations can be produced during time-dependent magma differentiation at shallow crustal levels. Specifically, fractional crystallization of plagioclase and amphibole coupled with contemporaneous decay of 226Ra can produce positive correlations between (226Ra/230Th) and Sr/Th or Ba/Th (to a lesser extent). Therefore, the correlations of (226Ra/230Th) with Sr/Th and Ba/Th cannot be used to unambiguously support the fluid addition model, and the strength of previous conclusions regarding recent fluid addition and ultra-fast ascent rates of arc magmas is significantly lessened.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 72, Issue 16, 15 August 2008, Pages 4136–4145
نویسندگان
, , ,