کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4705361 1352954 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mass spectrometric and quantum chemical determination of proton water clustering equilibria
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Mass spectrometric and quantum chemical determination of proton water clustering equilibria
چکیده انگلیسی

We report on the thermochemistry of proton hydration by water in the gas phase both experimentally using high-pressure mass spectrometry (HPMS) and theoretically using multilevel G3, G3B3, CBS-Q, CBS-QB3, CBS/QCI-APNO as well as density functional theory (DFT) calculations. Gas phase hydration enthalpies and entropies for protonated water cluster equilibria with up to 7 waters (i.e., n ⩽ 7H3O+·(H2O)n) were observed and exhibited non-monotonic behavior for successive hydration steps as well as enthalpy and entropy anomalies at higher cluster rank numbers. In particular, there is a significant jump in the stepwise enthalpies and entropies of cluster formation for n varying from 6 to 8. This behavior can be successfully interpreted using cluster geometries obtained from quantum chemical calculations by considering the number of additional hydrogen bonds formed at each hydration step and simultaneous weakening of ion–solvent interaction with increasing cluster size. The measured total hydration energy for the attachment of the first six water molecules around the hydronium ion was found to account for more than 60% of total bulk hydration free energy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 71, Issue 10, 15 May 2007, Pages 2436–2447
نویسندگان
, , , ,