کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4705597 1352966 2006 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora
چکیده انگلیسی

To investigate potential variability in the biosynthetic fractionation of hydrogen isotopes between environmental water and plant lipids, the cord grass Spartina alterniflora was sampled from a single location in a coastal marsh over a period of 16 months. Values of δD for a variety of lipids were measured by gas chromatography/pyrolysis/isotope ratio mass spectrometry. S. alterniflora grows partially submerged in seawater, so it has a virtually unlimited supply of water with nearly unvarying isotopic composition. Temporal changes in the δD values of lipids can thus be interpreted as representing mainly variations in biosynthetic fractionation. Fatty acids, n-alkanes, and phytol extracted from S. alterniflora have nearly constant δD values from ∼October through May, but exhibit marked decreases of up to 40‰ during summer months. These shifts in lipid δD values are interpreted as representing a change in the source of organic substrates, principally acetate, used for their biosynthesis. Lower summertime δD values for lipids are consistent with an increasing reliance on current photosynthate as feedstock for biosynthesis, whereas stored carbohydrate reserves are utilized more extensively during other times of the year. Regardless of the specific mechanism, the data emphasize that overall fractionations between water and plant lipids depend on biological as well as environmental variables, and that the biosynthetic fractionation is not necessarily constant even for a single plant. Because lipids such as fatty acids are present in all cells and turn over on timescales of weeks to months, measurements of δD values in fatty acids may also provide useful constraints for distinguishing biologic versus environmental controls on cellulose δD values in trees.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 70, Issue 9, 1 May 2006, Pages 2153–2162
نویسندگان
,