کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4717169 1638736 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Carbonate assimilation in magmas: A reappraisal based on experimental petrology
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Carbonate assimilation in magmas: A reappraisal based on experimental petrology
چکیده انگلیسی

The main effect of magma–carbonate interaction on magma differentiation is the formation of a silica-undersaturated, alkali-rich residual melt. Such a desilication process was explained as the progressive dissolution of CaCO3 in melt by consumption of SiO2 and MgO to form diopside sensu stricto. Magma chambers emplaced in carbonate substrata, however, are generally associated with magmatic skarns containing clinopyroxene with a high Ca-Tschermak activity in their paragenesis. Data are presented from magma–carbonate interaction experiments, demonstrating that carbonate assimilation is a complex process involving more components than so far assumed. Experimental results show that, during carbonate assimilation, a diopside–hedenbergite–Ca-Tschermak clinopyroxene solid solution is formed and that Ca-Tschermak/diopside and hedenbergite/diopside ratios increase as a function of the progressive carbonate assimilation. Accordingly, carbonate assimilation reaction should be written as follows, taking into account all the involved magmatic components:CaCO3solid + SiO2melt + MgOmelt + FeOmelt + Al2O3melt → (Di–Hd–CaTs)sssolid + CO2fluidThe texture of experimental products demonstrates that carbonate assimilation produces three-phases (solid, melt, and fluid) whose main products are: i) diopside–hedenbergite–Ca-Tschermak clinopyroxene solid solution; ii) silica-undersaturated CaO-rich melt; and iii) C–O–H fluid phase. The silica undersaturation of the melt and, more importantly, the occurrence of a CO2-rich fluid phase, must be taken into account as they significantly affect partition coefficients and the redox state of carbonated systems, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Lithos - Volume 114, Issues 3–4, February 2010, Pages 503–514
نویسندگان
, , , , , ,