کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4718303 1639099 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Shelf and deep-sea sedimentary environments and physical benthic disturbance regimes: A review and synthesis
ترجمه فارسی عنوان
محیط رسوبی و رسوبی و رسوبات فیزیکی فیزیکی: بررسی و سنتز
کلمات کلیدی
رژیم اختلال، رسوب شناسی فیزیکی، فلات قاره، شیب قاره ای، بی حسی دریاچه طوفان دریایی، کدورت جریانهای پایین، فرضیه اختلال متوسط
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
چکیده انگلیسی


• Natural physical sedimentological processes are disturbances to benthic ecosystems
• Processes remove benthos to create patches of clear space available for colonization
• Rates ecological succession of shelf and abyssal benthic communities are reviewed
• Recurrence intervals of disturbance-causing sedimentological processes are reviewed
• 10% of all seafloor may be classed as sedimentological benthic disturbance regimes.

Physical disturbances of the seafloor play a key role in ecosystem function and are postulated to exert control over spatial patterns of biodiversity. This review investigates the role of natural physical sedimentological processes that occur in shelf, slope and abyssal environments that also act as disturbances to benthic ecosystems and which, under certain circumstances, give rise to benthic disturbance regimes. Physical sedimentological processes can cause both press (process that causes a disturbance by acting over a timespan that is intolerable to benthos) and pulse (process that causes a disturbance by exceeding a threshold above which benthos are unable to remain attached to the seabed or are buried under rapidly deposited sediment) types of disturbance. On the continental shelf, pulse-type disturbances are due to temperate and tropical storm events, and press-type of disturbances identified here are due to the migration of bedforms and other sand bodies, and sustained periods of elevated turbidity caused by seasonally reversing wind patterns. On the continental slope and at abyssal depths, pulse-type disturbances are due to slumps, turbidity currents; benthic storms may cause either press or pulse type disturbances. A possible press-type of disturbance identified here is inter-annual changes in abyssal bottom current speed and/or direction. It is concluded that: 1) physical sedimentary disturbance regimes may characterize as much as 10% of the global ocean floor; 2) multidisciplinary research programs that integrate oceanography, sedimentology and benthic ecology to collect time series observational data sets are needed to study disturbance regimes; and 3) predictive habitat suitability modeling must include disturbance regime concepts, along with other biophysical variables that define the fundamental niches of marine species, in order to advance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Marine Geology - Volume 353, 1 July 2014, Pages 169–184
نویسندگان
,