کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4725225 1355970 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The isotopic composition of atmospheric argon and 40Ar/39Ar geochronology: Time for a change?
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
The isotopic composition of atmospheric argon and 40Ar/39Ar geochronology: Time for a change?
چکیده انگلیسی

A redetermination of the isotopic composition of atmospheric argon by Lee, J.-Y., Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, H.-S., Lee, J.B., Kim, J.S. [2006. A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta 70, 4507–4512] represents the first refinement since the work of Nier [1950. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Physical Reviews 77, 789–793]. The new 40Ar:38Ar:36Ar proportions imply <1% adjustments to 40Ar/39Ar ages in all but exceptional cases of very young and/or K-poor and/or Ca-rich samples, or cases in which samples are grossly under- or over-irradiated. Analytical protocols employing atmospheric argon to determine mass discrimination corrections are insensitive to the effects of revision on the air correction, but are subject to non-negligible adjustments arising from expanded heavy to light isotope ratios attending the increased mass discrimination correction. The competing effects of increased 40Ar/39Ar and 40Ar/37Ar ratios render the adjustments a function of sample chemistry and neutron irradiation parameters. The improved precision of atmospheric 40Ar/36Ar and 38Ar/36Ar permits increasingly sensitive detection of departures from atmospheric values. Non-atmospheric initial 40Ar/36Ar values are increasingly well-documented in volcanic materials, including subatmospheric values correlated with 38Ar/36Ar in a trend consistent with kinetic mass fractionation whereby incomplete equilibration between magma and atmosphere favors light isotope enrichment in the magma. The detailed mechanism(s) of such fractionation are unclear and must be clarified by further study. A detectable increase in atmospheric 40Ar/36Ar in the past 800 ka [Bender, M.L., Barnett, B., Dreyfus, G., Jouzel, J., Porcelli, D., 2008. The contemporary degassing rate of 40Ar from the Earth. Proceedings of the National Academy of Sciences 105, 8232–8237] suggests that ages of late Quaternary (e.g., <100 ka) materials incorporating large amounts of atmospheric argon such as biotite may be underestimated by as much as 100% if a modern atmospheric 40Ar/36Ar value is erroneously assumed, unless air argon is used to determine mass discrimination. Further evaluation of the evolution of paleoatmospheric 40Ar/36Ar, and the fidelity with which argon trapped in igneous materials reflects this, would be very productive. The use of isochrons rather than model (e.g., plateau) ages mitigates the vagaries associated with uncertain trapped argon isotope ratios, and the importance of strategies to derive statistically valid isochrons is underscored.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Quaternary Geochronology - Volume 4, Issue 4, August 2009, Pages 288–298
نویسندگان
, , ,