کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5783311 1637939 2017 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Influence of solution chemistry on the boron content in inorganic calcite grown in artificial seawater
ترجمه فارسی عنوان
تاثیر محلول شیمیایی بر محتوای بور در کلسیم معدنی در آب دریا مصنوعی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
چکیده انگلیسی

The ratio of boron to calcium (B/Ca) in marine biogenic carbonates has been proposed as a proxy for properties of seawater carbonate chemistry. Applying this proxy to planktic foraminifera residing in the surface seawater largely in equilibrium with the atmosphere may provide a valuable handle on past atmospheric CO2 concentrations. However, precise controls on B/Ca in planktic foraminifera remain enigmatic because it has been shown to depend on multiple physicochemical seawater properties. To help establish a firm inorganic basis for interpreting the B/Ca records, we examined the effect of a suite of chemical parameters ([Ca2+], pH, [DIC], salinity and [PO43−]) on B/Ca in inorganic calcite precipitated in artificial seawater. These parameters were primarily varied individually while keeping all others constant, but we also tested the influence of pH and [DIC] at a constant calcite precipitation rate (R) by concurrent [Ca2+] adjustments. In the simple [Ca2+], pH and [DIC] experiments, both R and B/Ca increased with these parameters. In the pH-[Ca2+] and [DIC]-[Ca2+] experiments at constant R, on the other hand, B/Ca was invariant at different pH and decreased with [DIC], respectively. These patterns agree with the behavior of solution [BTotal/DIC] ratio such that, at a fixed [BTotal], it is independent of pH but decreases with [DIC]. Based on these results, R and [BTotal/DIC] ratio appear to be the primary controls on B/Ca in inorganic calcite, suggesting that both B(OH)4− and B(OH)3 are possibly involved in B incorporation. Moreover, B/Ca modestly increased with salinity and [PO43−]. Inorganic calcite precipitated at higher R and in the presence of oxyanions such as SO42− and PO43− in growth solutions often undergoes surface roughening due to formation of crystallographic defects, vacancies and, occasionally, amorphous/hydrous CaCO3. These non-lattice sites may provide additional space for B, particularly B(OH)3. Consequently, besides the macroscopic influence of R and bulk solution chemistry, molecular-scale processes associated with calcite nucleation can be an important consideration for B incorporation, especially in complex ionic solutions. Lastly, the covariance of B/Ca with [DIC] and salinity observed here qualitatively agrees with those in planktic foraminifers. It follows that their impact on foraminiferal B/Ca is partly inorganically driven, which may explain why the effect is evident across different species.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 218, 1 December 2017, Pages 291-307
نویسندگان
, , , , ,