کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5783886 1638284 2017 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Time-dependent permeability evolution in compacting volcanic fracture systems and implications for gas overpressure
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Time-dependent permeability evolution in compacting volcanic fracture systems and implications for gas overpressure
چکیده انگلیسی
Volcanic eruptions are driven by the ascent of volatile-laden magma. The capacity of a volcano system to outgas these volatiles-its permeability-controls the explosive potential, and fractures at volcanic conduit margins play a crucial role in tempering eruption explosivity by acting as outgassing pathways. However, these fractures are often filled with hot volcanic debris that welds and compacts over time, meaning that these permeable pathways have a finite lifetime. While numerous studies emphasize that permeability evolution is important for regulating pressure in shallow volcanic systems, how and when this occurs remains an outstanding question in volcanology. In this contribution, we show that different pressure evolution regimes can be expected across a range of silicic systems as a function of the width and distribution of fractures in the system, the timescales over which they can outgas (a function of depth and temperature), and the permeability of the host material. We define outgassing, diffusive relaxation, and pressure increase regimes, which are distinguished by comparing the characteristic timescales over which they operate. Moreover, we define a critical permeability threshold, which determines (in concert with characteristic timescales of diffusive mass exchange between the pore and melt phases) whether systems fracture and outgas efficiently, or if a volcano will be prone to pressure increases, incomplete healing, and explosive failure.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Volcanology and Geothermal Research - Volume 339, 1 June 2017, Pages 81-97
نویسندگان
, , , ,