کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6063355 | 1201850 | 2015 | 16 صفحه PDF | دانلود رایگان |

BackgroundWe reported that DNA-dependent protein kinase (DNA-PK) is critical for the expression of nuclear factor κB–dependent genes in TNF-α–treated glioblastoma cells, suggesting an involvement in inflammatory diseases.ObjectiveWe sought to investigate the role of DNA-PK in asthma.MethodsCell culture and ovalbumin (OVA)– or house dust mite–based murine asthma models were used in this study.ResultsDNA-PK was essential for monocyte adhesion to TNF-α–treated endothelial cells. Administration of the DNA-PK inhibitor NU7441 reduced airway eosinophilia, mucus hypersecretion, airway hyperresponsiveness, and OVA-specific IgE production in mice prechallenged with OVA. Such effects correlated with a marked reduction in lung vascular cell adhesion molecule 1 expression and production of several cytokines, including IL-4, IL-5, IL-13, eotaxin, IL-2, and IL-12 and the chemokines monocyte chemoattractant protein 1 and keratinocyte-derived chemokine, with a negligible effect on IL-10/IFN-γ production. DNA-PK inhibition by gene heterozygosity of the 450-kDa catalytic subunit of the kinase (DNA-PKcs+/−) also prevented manifestation of asthma-like traits. These results were confirmed in a chronic model of asthma by using house dust mite, a human allergen. Remarkably, such protection occurred without causing severe combined immunodeficiency. Adoptive transfer of TH2-skewed OT-II wild-type CD4+ T cells reversed IgE and TH2 cytokine production but not airway hyperresponsiveness in OVA-challenged DNA-PKcs+/− mice. DNA-PK inhibition reduced IL-4, IL-5, IL-13, eotaxin, IL-8, and monocyte chemoattractant protein 1 production without affecting IL-2, IL-12, IFN-γ, and interferon-inducible protein 10 production in CD3/CD28-stimulated human CD4+ T cells, potentially by blocking expression of Gata3. These effects occurred without significant reductions in T-cell proliferation. In mouse CD4+ T cells in vitro DNA-PK inhibition severely blocked CD3/CD28-induced Gata3 and T-bet expression in CD4+ T cells and prevented differentiation of TH1 and TH2 cells under respective TH1- and TH2-skewing conditions.ConclusionOur results suggest DNA-PK as a novel determinant of asthma and a potential target for the treatment of the disease.
Journal: Journal of Allergy and Clinical Immunology - Volume 135, Issue 2, February 2015, Pages 425–440