کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6436049 1637534 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Divergent drivers of carbon dioxide and methane dynamics in an agricultural coastal floodplain: Post-flood hydrological and biological drivers
ترجمه فارسی عنوان
رانندگان واگرا دی اکسید کربن و پویایی متان در یک سیلاب ساحلی کشاورزی: ​​رانندگان هیدرولوژیکی و بیولوژیکی پس از سیل
کلمات کلیدی
زمین باتلاقی، خاک سولفات اسید، هضم گاز گلخانه ای، ایزوتوپهای پایدار،
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
چکیده انگلیسی


- Opposing response of dissolved CO2 and CH4 concentrations post-flood.
- Post-flood peaks of 2950 μM for CO2 and 2400 nM for CH4.
- Groundwater discharge sustained CO2 evasion via acidification of DIC.
- Post-flood conditions enhanced diel oscillations in CH4.
- Drainage canals were a significant source of CO2 and CH4 following a flood.

Many coastal floodplains have been artificially drained for agriculture, altering hydrological connectivity and the delivery of groundwater-derived solutes including carbon dioxide (CO2) and methane (CH4) to surface waters. Here, we investigated the drivers of CO2 and CH4 within the artificial drains of a coastal floodplain under sugarcane plantation and quantify the contribution of groundwater discharge to CO2 and CH4 dynamics over a flood event (290 mm of rainfall). High temporal resolution, in situ observations of dissolved CO2 and CH4, carbon stable isotopes of CH4 (δ13C-CH4), and the natural groundwater tracer radon (222Rn) allowed us to quantify CO2, CH4 and groundwater dynamics during the rapid recession of a flood over a five day period. Extreme super-saturation of free CO2 ([CO2*]) up to 2,951 μM (25,480% of atmospheric equilibrium) was driven by large groundwater input into the drains (maximum 87 cm day− 1), caused by a steep hydraulic head in the adjacent water table. Groundwater input sustained between 95 and 124% of the surface [CO2*] flux during the flood recession by delivering high carbonate alkalinity groundwater (DIC = 10,533 μM, ~ pH = 7.05) to acidic surface water (pH < 4), consequently transforming all groundwater-derived DIC to [CO2*]. In contrast, groundwater was not a major direct driver of CH4 contributing only 14% of total CH4 fluxes. A progressive increase in CH4 concentrations of up to ~ 2400 nM day− 1 occurred as a combination of increased substrate availability delivered by post-flood drainage water and longer residence times, which allowed for a biogenic CH4 signal to develop. The progressive enrichment in δ13C-CH4 values (− 70‰ to − 48‰) and increase in CH4 concentrations (46-2460 nM) support coupled production-oxidation, with concentrations and δ13C values remaining higher (2,798 nM and -47‰) than pre-flood conditions (534 nM and -55‰) three weeks after the flood. Our findings demonstrate how separate processes can drive the aquatic CO2 and CH4 response to a flood event in a drained coastal floodplain, and the key role groundwater had in post-flood [CO2*] evasion to the atmosphere, but not CH4.

198

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Geology - Volume 440, 15 November 2016, Pages 313-325
نویسندگان
, , , , , , ,