کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6437405 1637977 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dissolution of beidellite in acidic solutions: Ion exchange reactions and effect of crystal chemistry on smectite reactivity
ترجمه فارسی عنوان
رقیق کردن بیدلیت در محلول های اسیدی: واکنش های واکنش یون و اثر شیمی کریستالی بر واکنش های اسمکتیت
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
چکیده انگلیسی

The dissolution rate of beidellite, a dioctahedral smectite with tetrahedral charge that is a common swelling clay mineral in surface and subsurface natural environments, was studied in acidic solutions at 25 °C under far from equilibrium conditions. A <0.3 μm size fraction of SBId1 beidellite ((Si7.148Al0.852)(Al3.624Mg0.18Fe(III)0.224)O20(OH)4M+0.948) purchased from the Clay Mineral Society was used as the starting material, and experiments were performed in stirred flow-through reactors using HCl solutions with pH values ranging from 1 to 3. Several hydrodynamic conditions were tested using different flow rates with stirred and non-stirred particles. The aqueous Al/Si ratio measured at the outlet of the reactor was followed as a function of time and compared to solid stoichiometry values to assess the mechanisms occurring at the solid/solution interface. The reversible adsorption of Al3+ in the smectite interlayer space was evidenced for pH > 1.1, and the presence of an amorphous Si-enriched layer can be reasonably assumed in some cases from the interpretation of the aqueous concentrations and the characterization of the solid phase (X-ray diffraction and FTIR spectroscopy). Beidellite dissolution rates normalized to the sample mass (mol g−1 s−1) were obtained from Si and Al concentrations under steady state dissolution conditions. Calculated rates were compared with those previously reported for montmorillonite in several publications. The beidellite dissolution rates are, on average, ten times lower than those of montmorillonite. This implies that the smectite crystal chemistry (i.e., amount of Al3+ versus Mg2+ or Fe3+ substitution in the structure) has a strong effect on its stability and should be considered in reactive transport models in which the dissolution properties of smectites are taken into account.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 180, 1 May 2016, Pages 97-108
نویسندگان
, , , ,