کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6437411 1637977 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of particle size on the experimental dissolution and auto-aluminization processes of K-vermiculite
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Effect of particle size on the experimental dissolution and auto-aluminization processes of K-vermiculite
چکیده انگلیسی

In acidic soils, the fixation of Al in the interlayer spaces of 2:1 clay minerals and the subsequent formation of hydroxyl interlayer minerals (HIMs) are known to reduce soil fertility. The resulting crystal structure of HIMs consist of complex mixed-layer minerals (MLMs) with contrasting relative proportions of expandable, hydroxy-interlayers (HI) and illite layers. The present study aims to experimentally assess the influence of particle size on the formation of such complex HIMs for vermiculite saturated with potassium (K). Based on chemical and structural data, this study reports the dissolution and Al-interlayer occupancy of three size fractions (0.1-0.2, 1-2 and 10-20 μm) of K-vermiculite, which were obtained at pH = 3 by using stirred flow-through reactors. The Al-interlayer occupancies were ordered 0.1-0.2 μm < 10-20 μm < 1-2 μm even though the dissolution rate (in molvermiculite g−1 s−1) increases with decreasing particle size. For fine particles (0.1-0.2 μm), a rapid but low Al-interlayer occupancy during the transitory state and a null rate in the steady-state were evidenced and interpreted as indicating (i) a rapid but limited K+ interlayer exchange during the first step of the overall reactions and (ii) a stoichiometric dissolution of the crystal (TOT layer + interlayer) in the steady-state. By contrast, although the stoichiometric dissolution of the TOT layer is reached in the steady-state for the coarsest fractions (10-20 and 1-2 μm), the Al-interlayer occupancies continue to evolve due to the exchange of interlayer K+, which continues to progress for a longer duration.The mechanism of auto-aluminization is interpreted in the present study as multiple processes that involve (i) the dissolution of the mineral under acidic conditions, (ii) the interlayer diffusion of initial interlayer cations and their exchange with those from the aqueous phase and (iii) the fixation of interlayer aluminum. Competition between the kinetics of ion-exchange reactions and that of mineral dissolution is responsible for the above Al-interlayer occupancy order among the particle sizes (i.e., 0.1-0.2 μm < 10-20 μm < 1-2 μm). Moreover, this mechanism may be the cause of complex mineralogical structures such as mixed-layer minerals, which are commonly found in the clay-size fraction of acidic soils.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 180, 1 May 2016, Pages 164-176
نویسندگان
, , , , , , , ,