کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6437923 1637993 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Formation and transformation of a short range ordered iron carbonate precursor
ترجمه فارسی عنوان
تشکیل و تبدیل یک پیشرونده کربنات آهن به یک برد کوتاه
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
چکیده انگلیسی
Fe(II)-carbonates, such as siderite, form in environments where O2 is scarce, e.g., during marine sediment diagenesis, corrosion and possibly CO2 sequestration, but little is known about their formation pathways. We show that early precipitates from carbonate solutions containing 0.1 M Fe(II) with varying pH produced broad peaks in X-ray diffraction and contained dominantly Fe and CO3 when probed with X-ray photoelectron spectroscopy. Reduced pair distribution function (PDF) analysis shows only peaks corresponding to interatomic distances below 15 Å, reflecting a material with no long range structural order. Moreover, PDF peak positions differ from those for known iron carbonates and hydroxides. Mössbauer spectra also deviate from those expected for known iron carbonates and suggest a less crystalline structure. These data show that a previously unidentified iron carbonate precursor phase formed. Its coherent scattering domains determined from PDF analysis are slightly larger than for amorphous calcium carbonate, suggesting that the precursor could be nanocrystalline. Replica exchange molecular dynamics simulations of Fe-carbonate polynuclear complexes yield PDF peak positions that agree well with those from experiments, offering the possibility that the material is a condensate of such complexes, assembled in a relatively unorganised fashion. If this is the case, the material could be nearly amorphous, rather than being composed of well defined nanocrystals. PDF measurements of samples ageing in solution coupled with refinement with the software PDFgui show that the material transforms to siderite or siderite/chukanovite mixtures within hours and that the transformation rate depends on pH. The identified Fe-carbonate precursor may potentially form during anaerobic corrosion or bacterial Fe reduction.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 164, 1 September 2015, Pages 94-109
نویسندگان
, , , , , , , , ,