کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6437995 1637996 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kinetics and roles of solution and surface species of chalcopyrite dissolution at 650 mV
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Kinetics and roles of solution and surface species of chalcopyrite dissolution at 650 mV
چکیده انگلیسی
To better understand chalcopyrite dissolution in hydrogeochemical processes and the related environmental issue of acid and metalliferous drainage (AMD), the kinetics as well as the influence of solution composition and the nature of surface species formed during chalcopyrite dissolution have been examined under the controlled conditions of Eh 650 mV (SHE), pH 1.0-2.0 and 75 °C, with/without 4 mM Fe2+ addition. SEM and XPS analyses indicate that the surface products, both at micro- and nano-scales, did not passivate dissolution under the conditions examined. Extensive S0 was formed mostly as discrete particles rather than coatings on the chalcopyrite surface. Jarosite was only observed for dissolution at pH 2.0 with 4 mM added Fe2+. Without Fe2+ addition, the initial dissolution rate was observed to be only correlated to H+ activity as aH+0.12(±0.01), indicating chalcopyrite dissolution was controlled via chemical oxidation of chalcopyrite by H+/O2. When reaction between chalcopyrite and Fe3+ predominated chalcopyrite dissolution (i.e. later stage of dissolution without Fe2+ addition), the dissolution rate was found to be positively correlated to the activities of Fe3+, as aFe3+1.54(±0.07), and H+, as aH+0.13(±0.05). When 4 mM Fe2+ was added, no clear correlation was observed between the dissolution rate and the activities of either Fe3+or H+. It is proposed that the relative reactive surface area may not be proportional to that predicted by a shrinking sphere model as was assumed for derivation of the rate laws for the systems without added Fe2+, with the predicted rate being greater than the measured rate. Irrespective, it is clear that the addition of a relatively low Fe2+ concentration plays an important role in accelerating the copper dissolution rate at this Eh.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 161, 15 July 2015, Pages 188-202
نویسندگان
, , , ,