کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6438868 1638033 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Straight line regression through data with correlated uncertainties in two or more dimensions, with an application to kinetic isotope fractionation
ترجمه فارسی عنوان
رگرسیون خط مستقیم از طریق داده ها با عدم قطعیت همبستگی در دو یا چند ابعاد، با استفاده از تقسیم ایزوتوپ سینتیک
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
چکیده انگلیسی
Straight line regression algorithms are used frequently for measured data that contain non-negligible uncertainties in each variable. For the general case of correlated measurement uncertainties between two variables that differ from one analysis to the next, the popular algorithm of York, 1968 calculates the maximum likelihood estimate for the line parameters and their uncertainties. However, it considers only two-dimensional data and omits the uncertainty correlation between the slope and y-intercept, an important term for evaluating confidence intervals away from the origin. This contribution applies the maximum likelihood method to straight line regression through data in any number of dimensions to calculate a vector-valued slope and intercept as well as the covariance matrix that describes their uncertainties and uncertainty correlations. The algorithm is applied to Pb data measured by TIMS with a silica gel activator that define a fractionation line in a three dimensional log-ratio space. While the log-ratios of even mass number Pb isotopes follow the slope predicted by mass-dependent fractionation with a Rayleigh or exponential law within calculated uncertainties, the log-ratio containing the odd mass number isotope 207Pb diverges significantly, exhibiting mass-independent fractionation. The straight line regression algorithm is appropriate for fractionation lines that form linear trends in log-ratio space, but not for isochrons or mixing lines, which are predicted to be linear only when plotted as isotope or compositional ratios.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 124, 1 January 2014, Pages 237-249
نویسندگان
,