کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6439142 1638039 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Disproportionation and thermochemical sulfate reduction reactions in S-H2O-CH4 and S-D2O-CH4 systems from 200 to 340 °C at elevated pressures
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Disproportionation and thermochemical sulfate reduction reactions in S-H2O-CH4 and S-D2O-CH4 systems from 200 to 340 °C at elevated pressures
چکیده انگلیسی
Elemental sulfur, as a transient intermediate compound, by-product, or catalyst, plays significant roles in thermochemical sulfate reduction (TSR) reactions. However, the mechanisms of the reactions in S-H2O-hydrocarbons systems are not clear. To improve our understanding of reaction mechanisms, we conducted a series of experiments between 200 and 340 °C for S-H2O-CH4, S-D2O-CH4, and S-CH4-1m ZnBr2 systems in fused silica capillary capsules (FSCCs). After a heating period ranging from 24 to 2160 h (hrs), the quenched samples were analyzed by Raman spectroscopy. Combined with the in situ Raman spectra collected at high temperatures and pressures in the S-H2O and S-H2O-CH4 systems, our results showed that (1) the disproportionation of sulfur in the S-H2O-CH4 system occurred at temperatures above 200 °C and produced H2S, SO42−, and possibly trace amount of HSO4−; (2) sulfate (and bisulfate), in the presence of sulfur, can be reduced by methane between 250 and 340 °C to produce CO2 and H2S, and these TSR temperatures are much closer to those of the natural system (<200 °C) than those of any previous experiments; (3) the disproportionation and TSR reactions in the S-H2O-CH4 system may take place simultaneously, with TSR being favored at higher temperatures; and (4) in the system S-D2O-CH4, both TSR and the competitive disproportionation reactions occurred simultaneously at temperatures above 300 °C, but these reactions were very slow at lower temperatures. Our observation of methane reaction at 250 °C in a laboratory time scale suggests that, in a geologic time scale, methane may be destroyed by TSR reactions at temperatures >200 °C that can be reached by deep drilling for hydrocarbon resources.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 118, 1 October 2013, Pages 263-275
نویسندگان
, , , , ,