کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6440824 1638684 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Melt stagnation in peridotites from the Godzilla Megamullion Oceanic Core Complex, Parece Vela Basin, Philippine Sea
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Melt stagnation in peridotites from the Godzilla Megamullion Oceanic Core Complex, Parece Vela Basin, Philippine Sea
چکیده انگلیسی
The Godzilla Megamullion, located in the Parece Vela Backarc Basin of the Izu-Bonin-Mariana (IBM) system, is the largest known example of an Oceanic Core Complex (OCC). Peridotites recovered from the megamullion are divided petrographically into fertile (e.g. lherzolites), depleted (e.g. harzburgites), and plagioclase-bearing groups (Ohara et al., 2003a). A total of 151 thin sections were studied from the Kairei KR03-01, Hakuho Maru KH07-02, and Yokosuka YK09-05 cruises. Melt stagnation is studied via the incidence of plagioclase-bearing peridotites and the major element chemistry of Cr-spinels in the plag-bearing samples. A distinct trend in melt stagnation is evident along the length of the megamullion representing a secular evolution in the entrapment of melts rising through the lithosphere. The distal (furthest from the termination of spreading), depleted portion of the mullion represents a robust mantle section that was still producing abundant melt and can be compared to typical oceanic spreading with its relatively “normal” percentage of plagioclase peridotites and average spinel Cr# of 0.35. The medial, fertile portion of the mullion represents a steep falloff in melt productivity represented by fertile spinel compositions (i.e. Cr# < 0.25) and the presence of plagioclase-free lherzolites. The proximal (closest to termination of spreading), heavily plagioclase impregnated portion (with spinel Cr#s covering nearly the entire range of abyssal peridotite spinel compositions) of the mullion then represents a period of increasing stagnation of melt into a lithosphere that was undergoing progressive thickening. We infer that the processes of mantle evolution through melt stagnation and impregnation, as evidenced by the systematic variations in plag-peridotites along Godzilla Megamullion, represent a possibly common way in which the mantle reacts to OCC formation. In this case, Godzilla Megamullion may represent an extreme endmember in OCC formation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Lithos - Volumes 182–183, December 2013, Pages 1-10
نویسندگان
, , ,