کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8451677 1547696 2018 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Caspase-mediated cleavage of X-ray repair cross-complementing group 4 promotes apoptosis by enhancing nuclear translocation of caspase-activated DNase
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی تحقیقات سرطان
پیش نمایش صفحه اول مقاله
Caspase-mediated cleavage of X-ray repair cross-complementing group 4 promotes apoptosis by enhancing nuclear translocation of caspase-activated DNase
چکیده انگلیسی
X-ray repair cross-complementing group 4 (XRCC4), a repair protein for DNA double-strand breaks, is cleaved by caspases during apoptosis. In this study, we examined the role of XRCC4 in apoptosis. Cell lines, derived from XRCC4-deficient M10 mouse lymphoma cells and stably expressing wild-type XRCC4 or caspase-resistant XRCC4, were established and treated with staurosporine (STS) to induce apoptosis. In STS-induced apoptosis, expression of wild-type, but not caspase-resistant, XRCC4 in XRCC4-deficient cells enhanced oligonucleosomal DNA fragmentation and the appearance of TUNEL-positive cells by promoting nuclear translocation of caspase-activated DNase (CAD), a major nuclease for oligonucleosomal DNA fragmentation. CAD activity is reportedly regulated by the ratio of two inhibitor of CAD (ICAD) splice variants, ICAD-L and ICAD-S mRNA, which, respectively, produce proteins with and without the ability to transport CAD into the nucleus. The XRCC4-dependent promotion of nuclear import of CAD in STS-treated cells was associated with reduction of ICAD-S mRNA and protein, and enhancement of phosphorylation and nuclear import of serine/arginine-rich splicing factor (SRSF) 1. These XRCC4-dependent, apoptosis-enhancing effects were canceled by depletion of SRSF1 or SR protein kinase (SRPK) 1. In addition, overexpression of SRSF1 in XRCC4-deficient cells restored the normal level of apoptosis, suggesting that SRSF1 functions downstream of XRCC4 in activating CAD. This XRCC4-dependent, SRPK1/SRSF1-mediated regulatory mechanism was conserved in apoptosis in Jurkat human leukemia cells triggered by STS, and by two widely used anti-cancer agents, Paclitaxel and Vincristine. These data imply that the level of XRCC4 expression could be used to predict the effects of apoptosis-inducing drugs in cancer treatment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Experimental Cell Research - Volume 362, Issue 2, 15 January 2018, Pages 450-460
نویسندگان
, , , , , , , , ,