کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8866675 | 1621191 | 2018 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The functional characterization of grass- and shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables
ترجمه فارسی عنوان
مشخصات عملکردی اکوسیستم های چمن و درختچه با استفاده از سنجش از دور سنجی های چند بعدی: روندها، دقت و متغیرهای تعدیل کننده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
Shrub - درختچهChlorophyll - سبزینه یا کلروفیلHyperspectral remote sensing - سنجش از دور از نظر سنجیLAI - شبیهPlant functional traits - صفات عملکرد گیاهیImaging spectroscopy - طیف سنجی تصویربرداریMeta-analysis - فرا تحلیل Phosphorus - فسفرLignin - لیگنینWater content - محتوای آبGrassland - مرتعNitrogen - نیتروژنCarotenoids - کاروتنوئیدها
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
کامپیوتر در علوم زمین
چکیده انگلیسی
Hyperspectral remote sensing is increasingly being recognized as a powerful tool to map ecosystem properties and functions through time and space. However, general information on the accuracy of this technology to assess the vegetation's biophysical and -chemical trait composition, and on the variables which are mediating this accuracy, is often lacking so far. Here, we addressed this knowledge gap for grass- and shrubland ecosystems and applied novel three-level meta-analytical regression equations to 77 studies that validated hyperspectral remote sensing data with field observations. Our results showed that the accuracy of hyperspectral sensors is generally high, but strongly depends on the trait being studied (leaf area index: R2â¯=â¯0.79 and nRMSEâ¯=â¯0.19, chlorophyll: R2â¯=â¯0.77 and nRMSEâ¯=â¯0.21, carotenoids: R2â¯=â¯0.80 and nRMSEâ¯=â¯0.29, phosphorus: R2â¯=â¯0.75 and nRMSEâ¯=â¯0.14, nitrogen: R2â¯=â¯0.74 and nRMSEâ¯=â¯0.09, water: R2â¯=â¯0.69 and nRMSEâ¯=â¯0.13, and lignin content: R2â¯=â¯0.64 and nRMSEâ¯=â¯0.26). Moreover, they indicated that the use of multivariate signal processing techniques could improve these estimation accuracies (adjusted pâ¯<â¯0.06 for LAI, chlorophyll and nitrogen). Finally, estimations from air- and spaceborne imaging spectrometers, allowing for functional mapping at broader spatial scales, were found to be as accurate as estimations from ground-based spectral measurements. Despite these promising findings, we revealed that leaf morphological properties (e.g. specific leaf area and leaf dry matter content) and biochemical traits which are not growth-related (e.g. lignin and cellulose) remain underexplored in grass- and shrublands. Moreover there was a strong publication bias towards R2 for assessing model performance. Our findings foster and direct further methodological and technological developments for a more accurate and complete functional characterization of these ecosystems worldwide.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 209, May 2018, Pages 747-763
Journal: Remote Sensing of Environment - Volume 209, May 2018, Pages 747-763
نویسندگان
Elisa Van Cleemput, Laura Vanierschot, Belén Fernández-Castilla, Olivier Honnay, Ben Somers,