کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8910817 1637930 2018 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Physical heterogeneity control on effective mineral dissolution rates
ترجمه فارسی عنوان
کنترل ناهمگنی فیزیکی بر میزان انحلال مواد معدنی
کلمات کلیدی
هوای شیمیایی، سینتیک انحلال مواد معدنی، ناهمگونی فیزیکی، بالا بردن
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
چکیده انگلیسی
Hydrologic heterogeneity may be an important factor contributing to the discrepancy in laboratory and field measured dissolution rates, but the governing factors influencing mineral dissolution rates among various representations of physical heterogeneity remain poorly understood. Here, we present multiple reactive transport simulations of anorthite dissolution in 2D latticed random permeability fields and link the information from local grid scale (1 cm or 4 m) dissolution rates to domain-scale (1m or 400 m) effective dissolution rates measured by the flux-weighted average of an ensemble of flow paths. We compare results of homogeneous models to heterogeneous models with different structure and layered permeability distributions within the model domain. Chemistry is simplified to a single dissolving primary mineral (anorthite) distributed homogeneously throughout the domain and a single secondary mineral (kaolinite) that is allowed to dissolve or precipitate. Results show that increasing size in correlation structure (i.e. long integral scales) and high variance in permeability distribution are two important factors inducing a reduction in effective mineral dissolution rates compared to homogeneous permeability domains. Larger correlation structures produce larger zones of low permeability where diffusion is an important transport mechanism. Due to the increased residence time under slow diffusive transport, the saturation state of a solute with respect to a reacting mineral approaches equilibrium and reduces the reaction rate. High variance in permeability distribution favorably develops large low permeability zones that intensifies the reduction in mixing and effective dissolution rate. However, the degree of reduction in effective dissolution rate observed in 1 m × 1 m domains is too small (<1% reduction from the corresponding homogeneous case) to explain several orders of magnitude reduction observed in many field studies. When multimodality in permeability distribution is approximated by high permeability variance in 400 m × 400 m domains, the reduction in effective dissolution rate increases due to the effect of long diffusion length scales through zones with very slow reaction rates. The observed scale dependence becomes complicated when pH dependent kinetics are compared to the results from pH independent rate constants. In small domains where the entire domain is reactive, faster anorthite dissolution rates and slower kaolinite precipitation rates relative to pH independent rates at far-from-equilibrium conditions reduce the effective dissolution rate by increasing the saturation state. However, in large domains where less- or non-reactive zones develop, higher kaolinite precipitation rates in less reactive zones increase the effective anorthite dissolution rates relative to the rates observed in pH independent cases.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 227, 15 April 2018, Pages 246-263
نویسندگان
, ,